Optimal Rates for Regularized Least Squares Regression

نویسندگان

  • Ingo Steinwart
  • Don R. Hush
  • Clint Scovel
چکیده

We establish a new oracle inequality for kernelbased, regularized least squares regression methods, which uses the eigenvalues of the associated integral operator as a complexity measure. We then use this oracle inequality to derive learning rates for these methods. Here, it turns out that these rates are independent of the exponent of the regularization term. Finally, we show that our learning rates are asymptotically optimal whenever, e.g., the kernel is continuous and the input space is a compact metric space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces

We investigate regularized algorithms combining with projection for least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal r...

متن کامل

Optimal learning rates for least squares SVMs using Gaussian kernels

We prove a new oracle inequality for support vector machines with Gaussian RBF kernels solving the regularized least squares regression problem. To this end, we apply the modulus of smoothness. With the help of the new oracle inequality we then derive learning rates that can also be achieved by a simple data-dependent parameter selection method. Finally, it turns out that our learning rates are...

متن کامل

Optimal Rates for Spectral-regularized Algorithms with Least-Squares Regression over Hilbert Spaces

In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral-regularized algorithms, including ridge regression, principal component analysis, and gradient methods. We prove optimal, high-probability convergence results in terms of variants of norms ...

متن کامل

Regularized fuzzy clusterwise ridge regression

Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise re...

متن کامل

GBP/USD Currency Exchange Rate Time Series Forecasting Using Regularized Least-Squares Regression Method

GBP/USD currency exchange rates. A grid search is used to choose the optimal parameters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009